Chase Joyner

801 Homework 4

October 15, 2015

Problem 1:

(a) Show that the F test developed in the first part of this section is equivalent to the (generalized) likelihood ratio test for the reduced versus full models. (b) Find an F test for $H_{0}: X \beta=X \beta_{0}$ where β_{0} is known. (c) Construct a full versus reduced model test when σ^{2} has a known value σ_{0}^{2}.

Solution: (a) Let the full model be $Y=X \beta+\epsilon$ and the reduced model be $Y=X_{0} \gamma+\epsilon$, where $\epsilon \sim N\left(0, \sigma^{2} I\right)$. Denote the likelihood under the full model L_{F} and the likelihood under the reduced model L_{R}. Then, the likelihood ratio is

$$
r=\frac{\sup L_{F}\left(\sigma^{2}, \beta\right)}{\sup L_{R}\left(\sigma^{2}, \gamma\right)}=\frac{\left(\widehat{\sigma}_{F}^{2}\right)^{-n / 2} \exp \left\{-(Y-X \widehat{\beta})^{\prime}(Y-X \widehat{\beta}) / 2 \widehat{\sigma}_{F}^{2}\right\}}{\left(\widehat{\sigma}_{R}^{2}\right)^{-n / 2} \exp \left\{-\left(Y-X_{0} \widehat{\gamma}\right)^{\prime}\left(Y-X_{0} \widehat{\gamma}\right) / 2 \widehat{\sigma}_{R}^{2}\right\}}
$$

First, note that the estimates for σ^{2} under the full and reduced model is the MLE under those models, i.e.

$$
\widehat{\sigma}_{F}^{2}=\frac{Y^{\prime}(I-M) Y}{n} \quad \text { and } \quad \widehat{\sigma}_{R}^{2}=\frac{Y^{\prime}\left(I-M_{0}\right) Y}{n} .
$$

Then, we see that we can rewrite the exponentials as

$$
\begin{aligned}
\exp \left\{-\left(Y-X_{0} \widehat{\gamma}\right)^{\prime}\left(Y-X_{0} \widehat{\gamma}\right) / 2 \widehat{\sigma}_{R}^{2}\right\} & =\exp \left\{-\frac{n}{2} \cdot \frac{\left(Y-M_{0} Y\right)^{\prime}\left(Y-M_{0} Y\right)}{Y^{\prime}\left(I-M_{0}\right) Y}\right\} \\
& =\exp \left\{-\frac{n}{2} \cdot \frac{Y^{\prime} Y-Y^{\prime} M_{0} Y}{Y^{\prime} Y-Y^{\prime} M_{0} Y}\right\} \\
& =\exp \left\{-\frac{n}{2}\right\}
\end{aligned}
$$

and

$$
\exp \left\{-(Y-X \widehat{\beta})^{\prime}(Y-X \widehat{\beta}) / 2 \widehat{\sigma}_{F}^{2}\right\}=\exp \left\{-\frac{n}{2}\right\}
$$

Therefore, the ratio becomes

$$
\begin{aligned}
r=\left(\frac{\widehat{\sigma}_{F}^{2}}{\widehat{\sigma}_{R}^{2}}\right)^{-n / 2} & =\left(\frac{Y^{\prime}(I-M) Y}{Y^{\prime}\left(I-M_{0}\right) Y}\right)^{-n / 2}=\left(\frac{Y^{\prime}\left(I-M_{0}\right) Y}{Y^{\prime}(I-M) Y}\right)^{n / 2} \\
& =\left(\frac{Y^{\prime}(I-M) Y+Y^{\prime}\left(M-M_{0}\right) Y}{Y^{\prime}(I-M) Y}\right)^{n / 2} \\
& =\left(1+\frac{r\left(M-M_{0}\right)}{r(I-M)} \cdot \frac{Y^{\prime}\left(M-M_{0}\right) Y / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)}\right)^{n / 2} .
\end{aligned}
$$

Since this is monotone increasing in $\frac{Y^{\prime}\left(M-M_{0}\right) Y / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)}$ and the F statistic is

$$
F=\frac{Y^{\prime}\left(M-M_{0}\right) Y / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)}
$$

we see the two test tests are equivalent.
(b) Let the full model be $Y=X \beta+\epsilon$. Then, the reduced model induced by H_{0} is $Y^{\star}=X_{0} \gamma+\epsilon$, where $Y^{\star}=Y-X \beta_{0}$ and $X_{0}=0$. Then, note that $M=X\left(X^{\prime} X\right)^{-} X^{\prime}$ and $M_{0}=0$, and so $M-M_{0}=M$. Then, we calculate the test statistic

$$
\begin{aligned}
F & =\frac{Y^{\star}\left(M-M_{0}\right) Y^{\star} / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)} \\
& =\frac{\left(Y-X \beta_{0}\right)^{\prime} M\left(Y-X \beta_{0}\right) / r(M)}{Y^{\prime}(I-M) Y / r(I-M)}
\end{aligned}
$$

Then, reject H_{0} if $F>f(1-\alpha, r(M), r(I-M))$.
(c) Recall from section 2.6 that

$$
\frac{Y^{\prime}(I-M) Y}{\sigma^{2}} \sim \chi^{2}(r(I-M))
$$

Then, under H_{0}, we calculate the test statistic

$$
\chi_{0}^{2}=\frac{Y^{\prime}(I-M) Y}{\sigma_{0}^{2}}
$$

Therefore, reject H_{0} if $\chi_{0}^{2}<\chi^{2}(\alpha, r(I-M))$ or if $\chi_{0}^{2}>\chi^{2}(1-\alpha, r(I-M))$.

Problem 2:

Redo the tests in Exercise 2.2 using the theory of Section 3.2. Write down the models and explain the procedure. Exercise 2.2: Let $y_{11}, y_{12}, \ldots, y_{1 r}$ be $N\left(\mu_{1}, \sigma^{2}\right)$ and $y_{21}, y_{22}, \ldots, y_{2 s}$ be $N\left(\mu_{2}, \sigma^{2}\right)$ with all $y_{i j}$'s independent. Write this as a linear model. Find estimates of $\mu_{1}, \mu_{2}, \mu_{1}-\mu_{2}$, and σ^{2}. Form an $\alpha=.01$ test for $H_{0}: \mu_{1}=\mu_{2}$. Similarly, form 95% confidence intervals for $\mu_{1}-\mu_{2}$ and μ_{1}. What is the test for $H_{0}: \mu_{1}=\mu_{2}+\Delta$, where Δ is some known fixed quantity? How do these results compare with the usual analysis for two independent samples?

Solution: The full linear model can be written as $Y=X \beta+\epsilon$, where

$$
\left[\begin{array}{c}
y_{11} \\
\vdots \\
y_{1 r} \\
y_{21} \\
\vdots \\
y_{2 s}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{11} \\
\vdots \\
\epsilon_{1 r} \\
\epsilon_{21} \\
\vdots \\
\epsilon_{2 s}
\end{array}\right],
$$

and $\epsilon \sim N\left(0, \sigma^{2} I\right)$. We want to form an $\alpha=.01$ test for $H_{0}: \mu_{1}=\mu_{2}$, i.e. the reduced model is $Y=X_{0} \gamma+\epsilon$, where

$$
\left[\begin{array}{c}
y_{11} \\
\vdots \\
y_{1 r} \\
y_{21} \\
\vdots \\
y_{2 s}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
\vdots \\
1
\end{array}\right]\left[\gamma_{1}\right]+\left[\begin{array}{c}
\epsilon_{11} \\
\vdots \\
\epsilon_{1 r} \\
\epsilon_{21} \\
\vdots \\
\epsilon_{2 s}
\end{array}\right],
$$

and $\epsilon \sim N\left(0, \sigma^{2} I\right)$. We have the projection matrices

$$
M=X\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\begin{array}{cc}
\frac{\mathbf{1}}{\mathbf{r}} & \mathbf{0} \\
\mathbf{0} & \frac{\mathbf{1}}{\mathbf{s}}
\end{array}\right]_{(r+s) \times(r+s)}
$$

and

$$
M_{0}=X_{0}\left(X_{0}^{\prime} X_{0}\right)^{-} X_{0}^{\prime}=\left[\frac{\mathbf{1}}{(\mathbf{r}+\mathbf{s})}\right]_{(r+s) \times(r+s)}
$$

Then, we obtain the test statistic to be

$$
\begin{aligned}
F & =\frac{Y^{\prime}\left(M-M_{0}\right) Y / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)} \\
& =\frac{(M Y)^{\prime}(M Y)-\left(M_{0} Y\right)^{\prime}\left(M_{0} Y\right) / r\left(M-M_{0}\right)}{Y^{\prime} Y-(M Y)^{\prime}(M Y) / r(I-M)} \\
& =\frac{(X \widehat{\beta})^{\prime}(X \widehat{\beta})-\left(X_{0} \widehat{\gamma}\right)^{\prime}\left(X_{0} \widehat{\gamma}\right) / r\left(M-M_{0}\right)}{Y^{\prime} Y-(X \widehat{\beta})^{\prime}(X \widehat{\beta}) / r(I-M)}
\end{aligned}
$$

Recall from homework 3 problem 1 that

$$
\widehat{\beta}=\left[\begin{array}{l}
\bar{y}_{1} \\
\bar{y}_{2}
\end{array}\right] \quad \text { and } \quad \widehat{\gamma}=\left[\bar{y}_{12}\right]
$$

where $\bar{y}_{12}=\frac{1}{r+s}\left(y_{11}+\ldots+y_{2 s}\right)$. Multiplying these by X and X_{0}, respectively, gives

$$
F=\frac{\left(r \bar{y}_{1}^{2}+s \bar{y}_{2}^{2}-(r+s) \bar{y}_{12}^{2}\right) / 1}{\left(\sum_{i=1}^{r}\left(y_{1 i}^{2}-\bar{y}_{1}^{2}\right)+\sum_{i=1}^{s}\left(y_{2 i}^{2}-\bar{y}_{2}^{2}\right)\right) /(r+s-2)}
$$

Then, reject H_{0} if $F>f(1-\alpha, 1, r+s-2)$.
Now we wish to find the test for $H_{0}: \mu_{1}=\mu_{2}+\Delta$. Let the full model be $Y=X \beta+\epsilon$, where $\epsilon \sim N\left(0, \sigma^{2} I\right)$, i.e.

$$
\left[\begin{array}{c}
y_{11} \\
\vdots \\
y_{1 r} \\
y_{21} \\
\vdots \\
y_{2 s}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{11} \\
\vdots \\
\epsilon_{1 r} \\
\epsilon_{21} \\
\vdots \\
\epsilon_{2 s}
\end{array}\right] .
$$

The reduced model $Y=X_{0} \gamma+\epsilon$ can be written as

$$
\left[\begin{array}{c}
y_{11} \\
\vdots \\
y_{1 r} \\
y_{21} \\
\vdots \\
y_{2 s}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\mu_{2}+\Delta \\
\mu_{2}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{11} \\
\vdots \\
\epsilon_{1 r} \\
\epsilon_{21} \\
\vdots \\
\epsilon_{2 s}
\end{array}\right]
$$

or equivalently,

$$
\left[\begin{array}{c}
y_{11} \\
\vdots \\
y_{1 r} \\
y_{21} \\
\vdots \\
y_{2 s}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
\vdots \\
1
\end{array}\right]\left[\mu_{2}\right]+X\left[\begin{array}{c}
\Delta \\
0
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{11} \\
\vdots \\
\epsilon_{1 r} \\
\epsilon_{21} \\
\vdots \\
\epsilon_{2 s}
\end{array}\right] .
$$

Therefore, defining $Y^{\star}=Y-X b$, where $b=(\Delta, 0)^{\prime}$, we have the reduced model $Y^{\star}=X_{0} \gamma+\epsilon$, where $X_{0}=J_{r+s}, \gamma=\left[\mu_{2}\right]$, and $\epsilon \sim N\left(0, \sigma^{2} I\right)$. Then, we calculate the test statistic

$$
\begin{aligned}
F & =\frac{Y^{\star^{\prime}}\left(M-M_{0}\right) Y^{\star} / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)} \\
& =\frac{\left(\left(M Y^{\star}\right)^{\prime}\left(M Y^{\star}\right)-\left(M_{0} Y^{\star}\right)^{\prime}\left(M_{0} Y\right)\right) / r\left(M-M_{0}\right)}{\left(\left(Y^{\prime} Y-(M Y)^{\prime}(M Y)\right) / r(I-M)\right.} \\
& =\frac{\frac{1}{r}\left(\sum_{i=1}^{r} y_{1 i}-\Delta\right)^{2}+\frac{1}{s}\left(\sum_{i=1}^{s} y_{2 i}\right)^{2}-\frac{1}{r+s}\left(\sum_{i=1}^{r}\left(y_{1 i}-\Delta\right)+\sum_{i=1}^{s} y_{2 i}\right)}{\left(\sum_{i=1}^{r}\left(y_{1 i}^{2}-\bar{y}_{1}^{2}\right)+\sum_{i=1}^{s}\left(y_{2 i}^{2}-\bar{y}_{2}^{2}\right)\right) /(r+s-2)} .
\end{aligned}
$$

Therefore, reject H_{0} if $F>f(1-\alpha, 1, r+s-2)$.

Problem 3:

Redo the tests in Exercise 2.3 using the procedures of Section 3.2. Write down the models and explain the procedure. Hints: (a) Let A be a matrix of zeros, the generalized inverse of A, A^{-}, can be anything at all because $A A^{-} A=A$ for any choice of A^{-}. (b) There is no reason why X_{0} cannot be a matrix of zeros. Exercise 2.3: Let y_{1}, \ldots, y_{n} be independent $N\left(\mu, \sigma^{2}\right)$. Write a linear model for these data. Form an $\alpha=.01$ test for $H_{0}: \mu=\mu_{0}$, where μ_{0} is some known fixed number and form a 95% confidence interval for μ. How do these results compare with the usual analysis for one sample?

Solution: The full linear model $Y=X \beta+\epsilon$ can be written as

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right][\mu]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right],
$$

where $\epsilon \sim N\left(0, \sigma^{2} I\right)$. Then, the reduced model is $Y=X \beta_{0}+\epsilon$ and can be written as

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]\left[\mu_{0}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right],
$$

where $\epsilon \sim N\left(0, \sigma^{2} I\right)$, i.e. $X_{0}=0$. Then, we calculate the projection matrices

$$
\begin{aligned}
M & =X\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\frac{\mathbf{1}}{\mathbf{n}}\right]_{n \times n} \\
M_{0} & =X_{0}\left(X_{0}^{\prime} X_{0}\right)^{-} X_{0}^{\prime}=[\mathbf{0}]_{n \times n}
\end{aligned}
$$

and therefore we have $M-M_{0}=M$. Notice that $r\left(M-M_{0}\right)=r(M)=1$ and $r(I-M)=$ $n-r(M)=n-1$. Then, we calculate

$$
\begin{aligned}
\left(Y-X \beta_{0}\right)\left(M-M_{0}\right)\left(Y-X \beta_{0}\right) & =\left(Y-X \beta_{0}\right) M\left(Y-X \beta_{0}\right) \\
& =\left(M Y-M X \beta_{0}\right)^{\prime}\left(M Y-X \beta_{0}\right) \\
& =\left[\begin{array}{lll}
\bar{y}-\mu_{0} & \cdots & \bar{y}-\mu_{0}
\end{array}\right]\left[\begin{array}{c}
\bar{y}-\mu_{0} \\
\vdots \\
\bar{y}-\mu_{0}
\end{array}\right] \\
& =n\left(\bar{y}-\mu_{0}\right)^{2} .
\end{aligned}
$$

and

$$
Y^{\prime}(I-M) Y=Y^{\prime} Y-Y^{\prime} M Y=\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2} .
$$

Then, we obtain the test statistic

$$
\begin{aligned}
F & =\frac{\left(Y-X \beta_{0}\right)^{\prime}\left(M-M_{0}\right)\left(Y-X \beta_{0}\right) / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)} \\
& =\frac{n\left(\bar{y}-\mu_{0}\right)^{2}}{\left(\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right) /(n-1)} .
\end{aligned}
$$

Therefore, with $\alpha=.01$, reject H_{0} if $F>f(.99,1, n-1)$.

Problem 4:

Show that $\beta^{\prime} X^{\prime} M_{M P} X \beta=0$ if and only if $\Lambda^{\prime} \beta=0$.
Solution: Let $\Lambda^{\prime} \beta=0$. Then, $P^{\prime} X \beta=0$ and so $P^{\prime} M X \beta=0$. Then, notice that

$$
\beta^{\prime} X^{\prime} M_{M P} X \beta=\beta^{\prime} X^{\prime} M P\left(P^{\prime} M P\right)^{-} P^{\prime} M X \beta=0 .
$$

Now, let $\beta^{\prime} X^{\prime} M_{M P} X \beta=0$. Then, $\left(M_{M P} X \beta\right)^{\prime}\left(M_{M P} X \beta\right)=0$, which implies that $M_{M P} X \beta=$ 0 . Then, $P^{\prime} M_{M P} X \beta=0$. Then, we have

$$
\begin{aligned}
& P^{\prime} M_{M P} X \beta=0 \\
\Longrightarrow & P^{\prime} M P\left(P^{\prime} M P\right)^{-}(M P)^{\prime} X \beta=0 \\
\Longrightarrow & {\left[\left(P^{\prime} M\right)(M P)\left(P^{\prime} M P\right)^{-}(M P)^{\prime}\right] X \beta=0 } \\
\Longrightarrow & {\left[(M P)\left(P^{\prime} M P\right)^{-}(M P)^{\prime}(M P)\right]^{\prime} X \beta=0 } \\
\Longrightarrow & P^{\prime} M X \beta=0 \\
\Longrightarrow & P^{\prime} X \beta=0 .
\end{aligned}
$$

Therefore, $\Lambda^{\prime} \beta=0$.

Problem 5:

Consider a set of seemingly unrelated regression equations

$$
Y_{i}=X_{i} \beta_{i}+e_{i}, \quad e_{i} \sim N\left(0, \sigma^{2} I\right),
$$

$i=1, \ldots, r$, where X_{i} is an $n_{i} \times p$ matrix and the $e_{i} \mathrm{~S}$ are independent. Find the test for $H_{0}: \beta_{1}=$ $\ldots=\beta_{r}$.

Solution: Notice the full model $Y=X \beta+e$ can be written as

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{r}
\end{array}\right]=\left[\begin{array}{ccccc}
X_{1} & 0 & 0 & \cdots & 0 \\
0 & X_{2} & 0 & \cdots & 0 \\
0 & 0 & \ddots & & 0 \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & \cdots & X_{r}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{r}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{r}
\end{array}\right] .
$$

Then, the reduced model $Y=X_{0} \gamma+e$ can be written as

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{r}
\end{array}\right]=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{r}
\end{array}\right]\left[\beta_{1}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{r}
\end{array}\right] .
$$

Then, calculating $M=X\left(X^{\prime} X\right)^{-} X^{\prime}$ and $M_{0}=X_{0}\left(X_{0}^{\prime} X_{0}\right)^{-} X_{0}^{\prime}$, we obtain the statistic

$$
F=\frac{Y^{\prime}\left(M-M_{0}\right) Y / r\left(M-M_{0}\right)}{Y^{\prime}(I-M) Y / r(I-M)} .
$$

Then, reject H_{0} if $F>f\left(1-\alpha, r\left(M-M_{0}\right), r(I-M)\right)$.

